Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

John Nicolson Low,^a* Justo Cobo,^b Manuel Nogueras,^b Adolfo Sánchez,^b Pedro Hernández^c and Jairo Quiroga^c

^aDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, ^bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, and ^cGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad del Valle, AA25360 Cali, Colombia

Correspondence e-mail: jnlow111@hotmail.com

Key indicators

Single-crystal X-ray study T = 120 KMean $\sigma(\text{C}-\text{C}) = 0.005 \text{ Å}$ R factor = 0.054 wR factor = 0.116Data-to-parameter ratio = 13.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

 \odot 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

5-[(6-Chloro-[1,3]benzothiazol-2-ylamino)methylene]-2,2-dimethyl-[1,3]dioxane-4,6-dione

The molecules of the title compound, $C_{14}H_{11}ClN_2O_4S$, are linked together into ribbons formed by weak $C-H\cdots O$ hydrogen bonds.

Received 27 November 2001 Accepted 3 December 2001 Online 14 December 2001

Comment

The title compound, (I), is a benzothiazole derivative prepared in our search for biologically active molecules by a similar procedure to that reported previously for GURGIP (Cannon *et al.*, 2001; Cambridge Structural Database, Allen & Kennard, 1993).

GURGIP and compound (I) have similar molecular structures but have totally different supramolecular structures.

GURGIP has a supramolecular structure consisting of basepaired dimers with an $R^2_2(12)$ motif formed by a centrosymmetrically related pair of N-H···O hydrogen bonds.

Compound (I) has one intramolecular hydrogen bond, N21-H21···O14, which forms an R(6) ring (Bernstein *et al.*, 1995). The molecules are linked together into ribbons formed by the weak hydrogen bonds, C5-H5···O16 and C7-H7···O14. These two bonds combine to form a $C_2^2(10)$ chain. These hydrogen bonds link the molecules head-to-tail as a result of the centres of symmetry at (1, 0, 0.5) for the former bond and (0.5, 0, 1) for the latter bond, forming in each case $R_2^2(22)$ rings and hence forming ribbons (Fig. 2). The details of the hydrogen bonding are given in Table 1.

Examination of the structure with *PLATON* (Spek, 2001) showed that there were no solvent-accessible voids in the crystal lattice.

Experimental

A solution of Meldrum's acid (3.45 mmol) and trimethyl orthoformate (17.3 mmol) was heated to reflux for 2.5 h, then 2-amino-6chlorobenzothiazole (3.45 mmol) was added and the reaction mixture was heated for a further 30 min. The title compound precipitated, was separated by filtration, and recrystallized from ethanol, affording crystals suitable for X-ray diffraction (m.p.: 524 K, yield: 65%).

Figure 1

A view of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

 $\begin{array}{l} C_{14}H_{11}\text{ClN}_2\text{O}_4\text{S} \\ M_r = 338.76 \\ \text{Monoclinic, } P2_1/c \\ a = 5.3389 \ (4) \\ A \\ b = 28.583 \ (2) \\ A \\ c = 9.8618 \ (8) \\ A \\ \beta = 109.178 \ (4)^{\circ} \\ V = 1421.41 \ (19) \\ A^3 \\ Z = 4 \end{array}$

Data collection

Nonius KappaCCD diffractometer φ scans, and ω scans with κ offsets Absorption correction: multi-scan (*DENZO-SMN*; Otwinowski & Minor, 1997) $T_{min} = 0.918, T_{max} = 0.996$ 6289 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.116$ S = 0.942714 reflections 201 parameters 2714 independent reflections 1430 reflections with $I > 2\sigma(I)$ $R_{int} = 0.066$ $\theta_{max} = 27.4^{\circ}$ $h = -6 \rightarrow 6$ $k = -37 \rightarrow 29$ $l = -12 \rightarrow 12$

 $D_x = 1.583 \text{ Mg m}^{-3}$

Cell parameters from 2714

 $0.20 \times 0.15 \times 0.01 \ \mathrm{mm}$

Mo Kα radiation

reflections

 $\theta = 3.1-27.4^{\circ}$ $\mu = 0.44 \text{ mm}^{-1}$

T = 120(1) K

Plate, yellow

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0358P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.33 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.36 \text{ e } \text{Å}^{-3}$

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N21 - H21 \cdots O14$	0.88	2.01	2.671 (4)	131
$C5 - H5 \cdots O16^{i}$	0.95	2.38	3.299 (5)	163
$C7 - H7 \cdots O14^{ii}$	0.95	2.43	3.205 (5)	138

Symmetry codes: (i) 2 - x, -y, 1 - z; (ii) 1 - x, -y, 2 - z.

H atoms were treated as riding atoms with C-H = 0.95-0.98 Å and N-H = 0.88 Å.

Data collection: *KappaCCD Server Software* (Nonius, 1997); cell refinement: *DENZO-SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO-SMN*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure:

Figure 2

A view of the crystal structure showing the $C_2^2(10)$ chains and the two $R_2^2(22)$ rings. The molecule labelled with an asterisk (*) is at (2-x, -y, 1-z) and that labelled with a hash (#) is at (1-x, -y, 2-z).

SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2001); software used to prepare material for publication: SHELXL97 and WordPerfect macro PRPKAPPA (Ferguson, 1999).

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, using a Nonius KappaCCD diffractometer. The authors thank the staff for all their help and advice. JNL thanks NCR Self Service Dundee for grants which have provided computing facilities for this work.

References

- Allen, F. H. & Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Cannon, D., Quesada, A., Quiroga, J., Insuasty, B., Abonia, R., Hernández, P., Cobo, J., Nogueras, M., Sánchez A. & Low, J. N. (2001). Acta Cryst. E57, 0180–0181.
- Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Nonius (1997). *KappaCCD Server Software*. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. London: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2001). *PLATON*. October 2001 version. University of Utrecht, The Netherlands.